

6^{ème} journée scientifique de l'école doctorale thématique METAMORPHOSE

Université catholique de Louvain, Louvain-la-Neuve - 27 janvier 2012

TROPOSPHERIC NO, MAPPING USING DOAS FROM AN UAV

D.E. Constantin¹, A. Merlaud², M. Van Roozendael², F. Mingireanu^{1,3}, M. Voiculescu¹, L.P. Georgescu¹

¹Faculty of Sciences and Environment, "Dunarea de Jos" University of Galati, European Center of Excellence for the Environment, Domneasca Street, no. 111, Galati, Romania

²Belgian Institute for Space Aeronomy (BIRA-IASB), Avenue Circulaire 3, 1180 Brussels, Belgium

³Reev River Aerospace, Galati, Romania

ABSTRACT

We present the concept of a system for NO₂ mapping at high spatial resolution using a compact UV-VIS spectrometer onboard an Unmanned Aerial Vehicle (UAV). Boundary layer NO₂ columns will be retrieved using the DOAS technique. The aim of this project is to obtain NO₂ maps with a pixel size of a few hundred meters using the whiskbroom scanning geometry. This instrument will be a useful tool for data validation from satellite nadir sensors such as OMI or GOME-2 as well as for assessment of air quality models. Preliminary aspects including flight details (altitude, velocity) and signal-to-noise ratio are also considered. The first experiment is scheduled for the summer of 2012 in Romania.

About NO2

The Nitrogen Dioxide (NO₂) molecule consists of two oxygen atoms each attached to a nitrogen atom by covalent bonds, having a bond length of 0.120nm.

Fig.1. Skeletal formula of NO₂

NO₂ plays an important role in the creation and destruction of Ozone (O_3) (see below), and is known as O_3 precursor. It is also readily photolised into NO and an Oxygen atom.

- The forward and backward reaction of <u>NO₂ natural equilibrium</u>
- $NO_2 + h\nu \rightarrow NO + O(\lambda < 424 nm)$
- $O+O_2 \rightarrow O_3$
- $NO+O_3 \rightarrow NO2+O_2$

NO₂ production from CO oxidation :

 $CO + OH \rightarrow CO_2 + H$ $H+O_2 + M \rightarrow HO_2 + M$ $HO_2 + NO \rightarrow OH + NO_2$ $NO_2 + h\nu \rightarrow NO + O$ $O + O_2 + M \rightarrow O_3 + M$

Fig. 2. Block diagram of natural cycle of NO2

Natural sources of NO₂:

- Lightning
- Microbial activity in soil

Anthropogenic sources of NO₂:

- Transports
- Biomass burning
- Power generation
- Industrial processes

UAV DESCRIPTION

UAV Specifications:

-wing aperture :1,2-2,4m (depending on the operational requirements of the project); -altitude:4,000 meters max, min 2-3 feet;

About DOAS

Instrumental effects

Beer-Lambert Law in the atmosphere:

Rayleigh and Mie scattering Several absorbers

Idea of DOAS: separation of broad and narrow band absorption enables quantitative analysis for some gases, e.g. NO₂.

The result of the DOAS fit is a Differential Slant Column Density (DSCD) of NO_2 which is the difference between the NO₂ SCDs of the measured spectrum and the Fraunhofer reference spectrum.

The spectrum shown in Fig. 3 was recorded from an ultra light aircraft (ULM) in limb geometry (looking to the horizon) above the Po Valley in Italy, which always shows high level of NO₂.

Software used for DOAS retrieval: QDoas.

Fig. 3. Example of a NO₂ DOAS retrieval from A. Merlaud et al. paper in preparation for Atmospheric Measurements Technique, 2012

SCHEMATIC SET-UP & TECHNICAL DESCRIPTION OF PAYLOAD

-cruising speed:80-100km/h; -maximum speed:140km/h. Minimum speed:8-10km/h;

-range:10-15km package standard package extended 50km (radius may be increased in accord with the operational requirements of the project); -autonomy:60 minutes.

Fig.5. Image of an UAV

It=Tsc/Np

FOV= $2^{H^{tan}(\beta/2)}$ Tsc – Time of a complete scan Tsc=Ps/V Ps – Pixel size V – Speed Np=FOV/Ps

OMI NO2 MAP

2 3 4 6 8 11 15 20

Steel factory

Weight: 716 g (with no cover ~400g) Spectral range :200-750nm Resolution (FWHM): 1.5 nm Focal length: 75mm Entry slit: 50µm Grating: 600l/mm

NO₂ trop. column [10¹⁵ molec./cm²]

Fig. 7. Some components of the payload

Essential requirements for payload and flight experiment

Total weight: <900g Power: <20W Flight altitude: >2,000m Volume: 300x75x110 mm Flight duration: 60 minutes Data processing: after flight.

Fig. 8. The whisk broom scanning* *From Sabins, Jr., F.F., Remote Sensing: Principles and Interpretation, 2nd Ed., W.H. Freeman

Table 1.Relations between parameters used

Integration time [sec]	S/N	Altitude [m]	Swath [km]	Pixel's size [m]	Speed [km/h]	Complete scan [sec]	Number of pixels along the track
6	~10	3000	10	1000	60	60	10
4.28	8	4000	14	1000	60	60	14
1.5	~5	3000	10	500	60	30	20
1.07	4	4000	14	500	60	30	28
0.75	~3.5	3000	10	250	30	30	40
0.26	~2	4000	14	250	60	15	56
0.12	~1.5	3000	10	100	30	12	100
0.085	~1	4000	14	100	30	12	140

It – Integration time Np – Number of pixels

Where: H – Altitude of UAV FOV – Field of View

 β – scanning angle (120°)

01 SEPT 2011

Fig. 10. The NO₂ map over Romania. OMI shows an important smoothing effect due to the size of the pixel

Calculation of the Volume Mixing Ratio in the Boundary Layer from a Slant Column

Brăila

Date:01.SEPT.2011 Time:10'00(GMT+2) SZA=45°; BLH=1000m SC=2.52e16molec/cm² ρ_{air} = 2.42e19molec/cm³

AMF=2.41 VC=1.04e16molec/cm² C=1.04e11molec/cm³ VMR=4.29e-9molec/cm³ =4.29ppb

VC=SC/AMF; VMR= C_{NO2}/ρ_{air} C=VC/BLH AMF=1+1/cos(SZA) Where: SC – Slant Column VC – Vertical Column AMF – Air Mass Factor C – Concentration BLH – Boundary Layer Height VMR – Volume Mixing Ratio

SZA – Solar Zenith Angle

Fig. 11. The NO₂ plot from glider & DOAS experiment

Fig. 12. Image from glider & DOAS experiment

Acknowledgements

D.E. Constantin's work for this study was supported by the Grant SOP HRD/107/1.5/S/76822 TOP ACADEMIC co financed from ESF of EC, Romanian Government and University "Dunarea de Jos" of Galati