A. Merlaud ${ }^{1}$ (alexism@oma.be), D.E. Constantin², M. Van Roozendael¹, J. Maes ${ }^{1}$, C. Fayt ${ }^{1}$, F. Mingireanu²,3, M. Voiculescu², G. Murariu ${ }^{2}$, and L.P. Georgescu ${ }^{2}$
(1) Belgian Institute for Space Aeronomy, Brussels, Belgium, (2) University "Dunarea de Jos" of Galati, Faculty of Sciences and Environment, Galati, Romania, (3) Reev River Aerospace, Galati, Romania

Payload technical details
- Spectrometer: Avaspec 2048, spectral range 200-
750 nm , resolution $1,5 \mathrm{~nm}$
- Pc 104 with an integrated 2 GB SSD
- Scanner: pic microcontroller and servomotor
- Housing manufactured in 3d printing
- Total weight : 920 g
- Power consumption: 6 W
- Size: $27 \times 12 \times 12 \mathrm{~cm}^{3}$

Aircraft technical details

-custom -built by Reev River -custom - bu
-2.5 m wingspan
-speed: $60 \mathrm{~km} / \mathrm{h}$ at 3 km altitude
-autonomy: 2 hours

First results from a test flight in Belgium on an ultralight aircraft (28 October 2012)

Payload

Simulations using the NO2 field of a high resolution from an air quality model over Antwerpen (Belgium) :
integration time for each positon of the scanner determined by the pixel size, altitude, and speed of the aircraft
nitial noise level derived from a previous airborne experiment with the same spectrometer
(Merlaud et al., AMT, 2012)

